—

\‘\
National

Collegeo
Ireland

Configuration Manual

MSc Research Project
Cyber Security

Kapil Patil
Student ID: X18127126

School of Computing
National College of Ireland

Supervisor: Mr. Christos Grecos

‘—
National College of Ireland \ National

MSc Project Submission Sheet
School of Computing

Student Name: Kapil Patil

Student ID: X18127126

Programme: Cyber Security Year: 2019
Module: MSc Research Project

Lecturer: Mr. Christos Grecos

Submission

Due Date: 12/12/2019

Project Title: Securing Remote Access communications using Deep packet
Inspection

Word Count: 681 Page Count: 9

Collegef
Ireland

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

I agree to an electronic copy of my thesis being made publicly available on NORMA the

National College of Ireland’s Institutional Repository for consultation.

SIgNaAtUN . e et e b e et

Date: 12/12/2019

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be

placed into the assignment box located outside the office.

Office Use

Only Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Securing Remote Access communications using
Deep packet Inspection

Kapil Patil
X18127126

1 Introduction

The Configuration manual illustrates the hardware and software requirements for implementing
the Research project. It also contains screenshots that shows the step-by-step implementation
procedure of this research project “Securing remote access communications using Deep packet
Inspection”. The aim of this research to detect SSH-Tunnelling or port-forwarding using deep
packet inspection where open-source firewall that is integrated with a customized script. This
script is written in Python and various Python libraries are used which are namely: Pyshark,
Pcapy, Scapy, dpkt to inspect the traffic inside the tunnel.

2 System Configuration
For implementing any projects system configuration is the most important step. We must know
the hardware and software requirements for the implementation of this project.

2.1 Hardware Requirements
This research is conducted on a local system with the following hardware configuration:

e Processor: Intel i5- 3230M CPU @2.60 GHz
e RAM: 8.00 GB

e System Type: 64-bit operating System

2.2 Software Configuration
Below are the softwares which are used, during the implementation of this project

e Operating System: Windows 7
e Tools Used:

VMware Workstation 15 Pro: This is used for the virtualization and integration.
Python 3.8 (64-bit): The entire customize script for the detection of the nested
tunnel is written in Python. All the parameters to inspect traffic such as Source-IP,
Destination-1P, Source-port, Destination-port, Payload and Cipher suite and

results of the same are done using Python (Python, 2019).

PyCharm: PyCharm is an integrated development environment that is used for the
script. (Brains, 2019)

PfSense firewall version 2.4.4: This is the open-source firewall that is used inside
a virtualized environment where the customized script is integrated with this to
detect the malicious activities inside the SSH tunnels (PfSense, 2019).

GNS3: This is a network simulator that is used to simulate the overall project
implementation.

Wireshark version 3.0.7: This is a packet sniffing tool that is intercepting the
traffic between client and server, can create a .pcap file for further inspection.

3 Steps for Implementation

Download VMware Workstation.

Download GNS3

Install various python libraries as mentioned above.
Install Wireshark

Install PfSense firewall

Execute the python file that contains the project code and after that
respective output will be displayed accordingly.

4 Inspection of SSH tunnelling traffic using Python code

4.1 Shows the code to detect the client-server handshake first
This will basically check SSH version that is send from server to client and vice-versa

4.2 Check the conversation between client and server

Below screenshot shows that, if any SSH tunnel traffic comes at edge and this script will check
the client-address, client-port, source-address, source-port, and cipher suite.

This script is integrated with open-source firewall (PfSense) to inspect the tunnelled traffic
and decide the action whether this is pure-SSH or non-SSH traffic.

4.3 PfSense firewall console

FreeBSD- amd64 (pfSense. localdomain) (ttyvwH)

UHuware Virtual HMachine - Hetgate Device ID: e4dc138d9fcb6f4e3B867b
#xx llelcome to pfSense 2.4.4-RELEASE (amdB64) on pfSense ==

HAN (wan) -» emH -» vwd: 18.1.56.18-24

A) Logout (SSH only) 9) pfTop

1) Assign Interfaces 18) Filter Logs
Set interface(s) IP address 11) Restart webConfigurator
Reset webConfigurator password 12) PHP =hell + pfSense tools
Reset to factory defaults 13) Update from console
Reboot system 14) Enable Secure Shell (sshd)
Halt system 15) Restore recent configuration
Ping host 16) Restart PHP-FPM
Shell

Enter an option: [

After logging into firewall, create a rule from client to server where only port 22 (SSH) is enabled.

5 Evaluation / Experimental Results

5.1 Flow between 10.1.56.45 and 10.1.56.85

The figure shows the connection initiation process between the SSH client and server, where
10.1.56.45 is an SSH client and 10.1.56.85 is a server. After connection established, web-service
is accessed on 10.1.56.219 via SSH-tunneling using port 8080 on localhost.

The evaluation is carried out in two possible ways such as below:

1. SSH tunnel detected: If any crafted or nested traffic is shared between two communication
mediums then the results will show as SSH tunnel detected as shown in below snapshot.

2. SSH tunnel not detected: If the traffic between two communications medium is genuine and
authentic then it will show as SSH tunnel not detected as shown in below snapshot.

M Wireshark - Flow - ptunnel pcap. e —

Time 10.1.56.85 10.1.46.235

: 10.1.47.120 . 10.1.56.45
0.000000 33 ! Server: Enorypted packet (len=144) ! 23822 ! !
0.003696 = :5}&22_.22 [ACK] Seq=1 Ack=145 Win=254 .| 5000y i i
0.189238 32920 -_Mm&wa faihre AAAA ntp.usbuntu,com 53 :
0.189282 L =
6.657077
6.657110
6.657234 17 e 39432 — 22 [ACK] Seq=1 Ack=1 Win=29312 Len=0 TSval=3787186615 TSec=M23612514 e
6.657605 2 e Glient: Protocol (S5H-2.0-OpenSSH_7.6p1 Ubuntu-dubdoi.3) [
5.657516 »! 22 35432 [ACK] Sed=1 Ack=42 Win=65152 Len=0 TSval=3423812315 TSecr=3787186615 Ao
5.723209 = Server:| Protocol (SSH-2.0-OpenSSH_7.6p1 Ubuntu-dublintud.3) [—
&.723340 = 39432 _ 22 [ACK] Seqi42 Ack=42 Win=29312 Len=0 TSval=3787186581 TSecr=3423812580 e
£.724113 2 Client: Key Exchange Init I a2
5.724135 = 22 _ 39432 [ACK] Seq=42 Ack=1402 Win=£4128 Len=0 TSval=3423813581 TSecr=1787186682 e
6.724720 22 Serven: Key Exchange Init crezm
65.729585 2 Client: Diffie-Hellman Key Exchange Init crern
65.740687 P ! Serven D?Fﬁ&HeII?nan Key Exchange Rephy, Mew Keys, Encr\,rpbec! packet (len=172) __! 39437
6.746529 Y : Client: New Keys ; ! e
6.788329 = 22 . 39432 [ACK] Seq=1574 Ack=1466 Win=64128 Lan=0 TSval=3423612645 TSecr=3787185704 o432
£.788550 = : Client: Encrypted packet (len=44) I crern
6.788558 = 22 . 39432 [ACK] Seq=1574 Ack=1510 Win=64128 Len=0 TSval=3423812646 TSecr=1787186746 15432
6.738668 2 Server: Encrypted packet (len=44) 10432
6.738896 2 Client: Enonypted packet {len=50) crern
6.780868 ! | Serven Encrypred packet (en=52) | —
6.831016 =1 39432 _ 22 [ACK] Seq=1570 Ack=1670 Win=33536 Len=0 TGval=37671B6788 Toecr=1423812647 |
10.676823 : : !

5.2 SSH tunnelling traffic detected

In below diagram, packets will be checked against the Python script if the tunnel contains any
nested tunnel within it or not.

Wireshark 10 Graphs: ptunnel.pcap

480 -
400 -
g 320 |
F]
240 -
£
160 -
80 |
oL_________/_,_—.__/‘__________/\ — e
Cl L L N L L L N
o & 12 18 24 30 35 42
Time (s}
Oick ro select packer 7 (05 = 7).
Enabled Graph Name Display Filter Color Style Y Axis Field SMA Period
d All packets [| Line Packets None
& TCP errors tep.analysis.flags [l Bar Packets MNone

— o Mouse @ drags zooms Inmd [] Time of day [7] Log scale

5.3 Screenshots of Tunnel traffic detected and not detected

Below screenshots, shows that whether port-forwarding is done or not by analyzing the network
traffic between client and server. Also It checks how many packets are being transferred inside
this tunnel.

SSH Tunnelling detected (NON-SSH)

=)
£3
=
(]

Y-axis
S5H Tunneling detected e

~

SSH Tunnel Traffic
on-55H Traffic Blocked

Tunnel Started Traffic detection begins Traffic detection finished X-axis

Time

If atraffic will contains other than SSH traffic then it will detect as shown above or else it will
allow the traffic at firewall end.

6 Conclusion

Thus, the deep packet inspection is achieved by implementing customized python script with the
PfSense firewall. The solution is able to efficiently differentiate between normal SSH traffic and
nested tunneling.

References

Brains, J. (2019, December 2). PyCharm. Retrieved from jetbrain.com:
https://www.jetbrains.com/pycharm/download/

PfSense. (2019, December 12). Latest Stable Version (Community Edition). Retrieved from pfsense.org:
https://www.pfsense.org/download/

Python. (2019, December 12). Download the latest version for Windows. Retrieved from Python.org:
https://www.python.org/downloads/

