
Automatic Software Dependency
Management using Blockchain

Msc Research Project

Cloud Computing

Gavin D’mello
x17110483

School of Computing

National College of Ireland

Supervisor: Horacio González–Vélez

www.ncirl.ie

National College of Ireland
Project Submission Sheet – 2017/2018

School of Computing

Student Name: Gavin D’mello
Student ID: x17110483
Programme: Cloud Computing
Year: 2018
Module: Msc Research Project
Lecturer: Horacio González–Vélez
Submission Due
Date:

13/07/2018

Project Title: Automatic Software Dependency Management using Block-
chain

Word Count: 5649

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students
are encouraged to use the Harvard Referencing Standard supplied by the Library. To
use other author’s written or electronic work is illegal (plagiarism) and may result in
disciplinary action. Students may be required to undergo a viva (oral examination) if
there is suspicion about the validity of their submitted work.

Signature:

Date: 16th September 2018

PLEASE READ THE FOLLOWING INSTRUCTIONS:
1. Please attach a completed copy of this sheet to each project (including multiple copies).
2. You must ensure that you retain a HARD COPY of ALL projects, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep a
copy on the computer. Please do not bind projects or place in covers unless specifically
requested.
3. Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if
applicable):

Automatic Software Dependency Management using
Blockchain

Gavin D’mello
x17110483

Msc Research Project in Cloud Computing

16th September 2018

Abstract

Contemporary software deployments rely on cloud-based package managers for
installation, where existing packages are installed on demand from remote code
repositories. Usually, frameworks or common utilities, packages increase the code
reusability within the ecosystem, whilst keeping the code base small. However,
disruptions in the package management services can potentially affect development
and deployment workflows. Furthermore, cloud package managers have arguably
an ambiguous ownership model and offer limited visibility of packages to the users.
This work describes the development of a blockchain-based package control system
which is decentralised, reliable and transparent. Blockchain nodes are installed
within the infrastructure to provide immutability, and then a dependency graph is
constructed to trace the software provenance and package reliance. Our system has
been tested with 4338 packages from NPM, 950 out of which are the top depended-
upon packages.

Contents

1 Introduction 2

2 Related Work 3

3 Contribution 4

4 Methodology 6
4.1 Data structure . 6
4.2 Storage solution . 8
4.3 Algorithms . 9
4.4 Diagrams . 10

5 Implementation 13

6 Evaluation 15

7 Conclusion and Future Work 17

1

1 Introduction

Long considered a key practice in the industry, software reuse entails the creation of new
software systems using existing software packages Krueger (1992). Most software pack-
ages are made available as common utility tools or frameworks which are used by millions
of users. With the advent of a microservices and cloud architectures, package reuse has
increased as each service has its lifetime and own state to manage independently of other
services. Each language and community tend to have a different operating package man-
ager, and the proliferation of online version control tools such as Github and Bitbucket
have led to the creation wider range of interdependent software components Decan et al.
(2016).

Package managers provide a platform for code sharing and reliability. Reliable applic-
ation package managers are of prime importance to software developers. Most packages
need to be installed right before the deployment phase. Software packages tend to have
direct and transitive dependencies on other packages, which make them vulnerable an-
d/or prone to failure if any dependency is unpublished or compromised. Dependencies
are not necessarily straightforward and can have multiple nesting levels. For example, the
package libcurl, which is used for sending HTTP requests, depends on other packages
like zlib which is used to compress data. Any failure in an application package manager
could lead to build failures and hinder the development processes.

Different software package managers offer mirrors and streaming. Nonetheless, most
package managers are heavily centralised in their architectures, which can present a single
point of failure and, more relevant to this work, a source of inconsistencies when package
components or versions change. It is therefore important to check if existing package
managers can be decentralised to improve the reliability of the ecosystem.

Blockchain smart contracts allow us to store data and execute functions on them in
a decentralised setup. Once the smart contract is deployed, transactions can be sent to
the contract. The changes made by the transactions can be mined and broadcasted to
the entire network. This work focuses on the application of smart contracts to maintain
an immutable decentralised change control system for packages and versions. It can
assure the provenance of a given set of packages to assure the correct development and
deployment for a given set of new packages. We have evaluated our work using 4338
packages from NPM.

This paper is organised as follows. Section 2 discusses package managers and existing
Blockchain systems. Section 4 outlines our proposed method to manage software packages
with Blockchain, including the proposed algorithm for smart contracts. Section 5 shows
the implementation of versions on the Smart contracts. Solidity was used to write the
Smart contract and peer to peer storage was used to upload the packages. The version
tree is described which shows how one version is different from another. The pattern
used to store the contract also helps us to seamlessly change the processing logic from
the storage. Section 6 presents our evaluation using 4338 packages along with some of
their versions. These 4338 packages include packages which are the most depended-upon
and key utilities. The section also outlines the bandwidth requirements of the blockchain
node and the latency involved in pulling the packages from the system. It also shows
a part of a network graph modeled directly from the data coming from the blockchain
node. Finally, Section 7 presents some concluding remarks.

2 Related Work

Traditionally, software has been created using a waterfall model where every change goes
through some pre-requisite number of stages. With the advent of open-source and rapid
collaborative environments, rapid application development has increasingly become the
norm for applicative environments Ruparelia (2010). Agile, Scrum, Extreme Program-
ming, and other rapid application development methodologies have become more popular,
since they allow changes to be added dynamically, leading to continuous implementation
using a backlog. Developers pick software features from the backlog and releases are
made at shorter durations compared to the traditional model, leading to adaptive soft-
ware development Highsmith and Cockburn (2001).

Code bases are constantly evolving over time and version control tools like Git and
Subversion are widely used to manage versions and control changes. Github and Bitbucket
are widely employed in the software industry for hosting remote code repositories based
on such services. These are centralised stores keep all the repositories published and also
improve code discovery.

Github and Bitbucket encourage reuse of application code and, arguably, save re-
sources and configuration efforts as the same package can be globally used by many
different programs. However, Github and BitBucket package management can be com-
plex. Packages have to be typically downloaded using source code and each client needs
to explicitly keep version control on each package.

Cloud computing enables the provision of software on demand but requires applica-
tions to be delivered as a consistent lightweight service over the Internet. Consequently,
monolithic software architectures are constantly getting divided into microservices Balalaie
et al. (2016). The important decision developers have to make is what constitutes a ser-
vice. The separation of concerns has made life difficult for developers because some code
can be duplicated across services.

Managing dynamic versions and software dependencies is complicated, as the program
dependency graph for large programs is long known to be difficult to handle Ottenstein
and Ottenstein (1984). Microservice-based cloud architecture—where package depend-
encies can be linked to different packages—then increases the challenge at hand Toffetti
et al. (2017), since the search space is significantly large to completely understand con-
flicts between dependencies.

The term ’DLL hell’ has been coined to describe many different versions of the same
library Tucker et al. (2007). Programs using the different versions of the same library
tend to break in case there are major changes in the package, so package managers are
expected to be ‘intelligent enough’ to handle different versions of the same package. A
CUDF (Common Upgrade Description Format) document was proposed to keep a track
of the package definition and its dependencies Abate et al. (2012), similar to PyPI’s
requirement.txt file or NPM’s package.json. However, modern-day application pack-
age managers such as NPM can have multiple versions of the package Schlueter (2010),
and common version requirements are kept in a common directory and alternate versions
are kept local to the package which helps to eliminate collisions of different versions.
Some package managers use semantic versioning or ’semver’ principles. These principles
should be clearly understood by the authors and users. Authors must understand that
the breaking changes must always be released as major changes. Users must carefully re-
view the changes in the packages to avoid build errors. Failure to understand these laws
puts build systems at risk. Versions are divided into three parts Semantic Versioning

Table 1: List of languages and their package managers
Language Package manager

Java Maven
Nodejs Npm
Python Pypi

C# Nuget
PHP Packagist
Ruby Ruby gems

user guide (2013): Major.Minor.Patch
A security-oriented management framework, CHAINIAC has been used to verify integ-

rity and authenticity for software-release processes based on decentralised nodes Nikitin
et al. (2017). However, CHAINIAC does not appear to address the immutability issue as
changes in versions may eventually break compilation and software components. Major
version bumps are for breaking changes in the API or when the package big parts of the
package are being rewritten. Minor versions are for new features additions to existing set
without breaking changes. A patch is bug fixes without breaking changes.

Every programming language has its own package manager. Table 1 has a list of
selected languages along with their package managers

Having openly released their architecture for dependency management, NPM is the
package manager for JavaScript and is also widely considered among the largest code
repositories in the world Wittern et al. (2016).

3 Contribution

This is a brief comparison between the existing systems and the proposed method.

Table 2: Comparison of existing systems and the proposed method

Variable name Different Package Managers
Head Maven Nuget NPM Proposed Method

Decentralized No No No Yes
Write Throughput High High High Low
Read Throughput High High High High

Immutable No No No Yes

The proposed method involves using a blockchain-based smart contract to decentralise
the package management. The idea is to propose a model which can work well with
both centralized and decentralized systems. Decentralisation is offered by a blockchain
network, in our case Ethereum. Ethereum uses Solidity for creating smart contracts.
The language has similar syntax to Javascript. The contract is compiled by a Solidity
compiler. The Solidity compiler returns the bytecode which needs to be deployed to the
Ethereum node. language is yet under heavy development. There are several features
like the dynamic passing of structures and mappings which are experimental under the
current version.

Figure 1: Blockchain data flow.

A blockchain can be construed as a network rather than a technology or system. The
smart contract storage is essentially a public database which is immutable and decentral-
ized. It has primarily been used in financial systems. It only came into prominence when
Nakamoto released the Bitcoin paper Nakamoto (2008). The system did not have a cent-
ral authority for verifying transactions and involves having a group of miners to which
verify transactions. The miners are paid for the electricity and CPU spent in verifying
the transactions. Figure 1 shows how data flows between different nodes in a blockchain
network. The work was substantial enough to gain traction. Bitcoin is not Turing com-
plete and potential blockchain adopters could not do anything but get inspired by the
system and reinvent the wheel by building something similar.

Ethereum is considered a natural extension of Bitcoin which is also a cryptocurrency.
Ethereum is a Turing complete solution where the user can program and deploy bytecode
to the Ethereum nodes Buterin et al. (2014). This led to interesting opportunities where
users could actually harness the actual strength of the network. The concept of smart
contracts allowed the user to add custom logic to the Ethereum nodes. The smart contract
is written in Solidity which is a general-purpose programming language. The smart
contract functions can be called from thin clients like browsers which we call decentralized
applications. Any change to data on the Blockchain is mined by the Ethereum community
miners and there is a gas price which the miner gets for blocks that they add to the
system. Ethereum uses a distributed ledger for transactions and provides a decentralized
architecture for smart contract execution. After the smart contract is deployed onto the
Ethereum node, the contract is executed via RPC calls from thin clients.

F

C3

x4:1x5:0x2:1

C2

x4:0x3:0x2:0

C1

x3:0x2:0x1:0

Figure 2: Transitive nature of packages.

4 Methodology

Equation (1) presents the clauses which act as dependencies of a package to be installed.

(¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x2 ∨ x3 ∨ x4) ∧ (¬x2 ∨ ¬x5 ∨ x3) (1)

Each clause has three versions which have all literals as sub-dependencies of depend-
encies. Each literal has two versions x1:0 and x1:1, where x1:0 is given as the negation
in the package. To install a package F, we need to install all its sub packages given by
clauses in the equation. Assuming we can install only one version of the package at a
time, we need to find a satisfying assignment to Equation (1) such that we get a suc-
cessful response where all clauses can be installed for the main package to be installed.
It has been shown that the problem is NP-complete by converting the 3SAT instance
to a dependency problem instance Cox (2016). The NP-completeness can be avoided by
attacking some assumptions like only a single package can be installed on the instance at
a time and having a versioning system which does not specify package range.

Every package manager has to deal with direct and transitive dependencies. The more
the transitivity, the more the complicated the network. The transitivity can be seen from
2. Here, all the nodes are packages and the edges represent the dependence. We can see
that package F depends on C1, C2 and C3. Also, packages C1, C2 and C3 directly depend
on other packages.

Here, each C clause has three versions each of which depends on different packages.
For example, C1:0 depends on x1:0 and C1:1 depends on x2:0. A dependency chart was used
for the 3SAT reduction as shown by Cox (2016). If the x packages were to be removed,
it would affect F and all C packages. The ’left-pad’ problem was pointed out by Decan
et al. (2016), where a package named ’left-pad’ was used by major packages like Atom and
Babel. The owner of ’left-pad’ unpublished this package which caused all installations
and builds to fail. Two percent of the transitive packages installations failed because of
this event. Developers started rethinking their dependency structures and including only
which they dire needed.

Smart contracts are similar to stored procedures in SQL. The bytecode of the smart
contract is deployed to all the network nodes. The functions of the bytecode are then
invoked via RPC calls on the client. New data to be mined requires proof of work from
the Ethereum node. Proof of work here means the node will have to perform some
computational work before adding a block to the network. This reduces the number of
the blocks a node can add to the network and gets fairness to the system.

4.1 Data structure

The data schema can be best seen as a tree. The root node acts the package name and
the leaf node is the actual package information. The nodes are version numbers. The

gcc

0

0

1

v0.0.1

2

v0.0.2

1

0

v0.1.0

Figure 3: Placement of new versions on version tree

{
owner : ’ example ownerid ’ ,
dependenc ies : {

’ Package1 ’ : ’ 1 . 1 . 2 ’ ,
’ Package2 ’ : ’ 1 . 2 . 1 ’

} ,
l i n k : ’ example l ink ’ ,
checksum : ’ example checksum ’

}

Figure 4: Data structure for package versioning.

Figure 5: Smart contract interaction.

data structure provided in Figure 4 gives a gist of the data structure. Every package
would have its package tree. The data structure is flexible to both the minor major
versioning technique as well as semantic versioning where we have three versions. An
oversimplification of this data structure would be to have to nested map pointing to a
resource. Using as hashmap keeps the time complexity to O(1).

The package information will contain information which is important to install the
package like dependencies, link, dependents. The package dependencies are the packages
which will be installed with the package. The version of the dependencies is important
here to exactly install the dependency the package needs. The data can be fed to the
client either in a single go or differently for every package. The ownerId helps us to
identify the owner of the package. The package ecosystem can be looked upon as a giant
graph where each can depend on other packages or other packages depend on it. The link
is the pointer to the package which will be stored with IPFS.

The developers can host the Ethereum nodes in their environment or use the network.
Some users would like to keep a copy of the blockchain in the event the network goes
down. The usage of the node or the network will be configurable via the package manager
client.

4.2 Storage solution

We need to keep the bare minimum information on the ledger so that the intermediation
of metadata on the peer to peer network is fast. A compressed version of the package
would be kept on the IPFS. IPFS(Interplanetary file system) is peer to peer storage
solution. While uploading the package file to IPFS we receive an immutable hash. This
is hash can be used to retrieve the file in the future. IPFS uses a Distributed hash table
to store the hash and the data is stored locally in the node where it is published. Any
other node which requests a file has to download the file from the nearest node and keep
it locally with its self for a definite period of time.

We use a Coral Distributed hash table to store the data which concentrates more
on locality Benet (2014). A replication factor can be added to have some replication of
blocks. The hash returned is stored on the Smart contract. IPFS internally uses the Bit

Torrent protocol where it opens up many connections to the different peers and downloads
bits and pieces of the file simultaneously. By using IPFS we make sure that no part of
the architecture is centralised. IPFS is used for storing web archival records where the
payloads are stored in IPFS and the indexes are stored in a format called CDXJ Alam
et al. (2016). CDXJ is an extension to CDX which has JSON support. CDXJ plays a
similar role to the blockchain node in our system except that it is mutable.

4.3 Algorithms

The algorithm is for storing package which the developer wants to make available. The
client side would have to provide the owner name, package name, version, and depend-
encies. The package version, name, and dependencies are extracted from the dependency
file on the client. The package to be published is stored in the data structure mentioned
above which will contain trees for all packages. The complexity of this algorithm is O(1).
The package Info is the same as the mentioned above. It will contain the dependencies,
dependency versions and link to the current package.

Algorithm 1 Publish algorithm

1: procedure publishPackage
. *Smart contract storage

2: packages ← package map
. *inputs

3: pn← name of the package
4: packageInfo← packageInfo
5: v ← version
6: major ← version major
7: minor ← version minor
8: patch← version patch
9: if packages[pn] then

10: if packages[pn][major][minor][patch] == null then
11: packages[pn][major][minor][patch]← packageInfo
12: success← true
13: else
14: success← false
15: end if
16: end if

return success
17: end procedure

The algorithm for downloading an installed package is given. The asymptotic com-
plexity of installing the entire package depends on the number of dependencies in the
package. Requesting a package with its version from the storage layer would have a time
complexity of O(1). Web3, which is the client used to connect to Ethereum node is does
not support passing structures downstream yet. As and when support is added for dy-
namic structures being returned downstream, the model contract can have the processing
logic to collect the package with all its dependencies. This would decouple the storage
and the processing and the model contract can be changed with time.

Algorithm 2 Install package algorithm

1: procedure getpackage
. *Smart contract storage

2: packages← map of packages
. *inputs

3: major ← version major
4: minor ← version minor
5: patch← version patch
6: result← []
7: if packages[pn][major][minor][patch] != null then
8: packageInfo← packages[pn][major][minor][patch]
9: dependencies← packageInfo[’dependencies’]

10: result← packageInfo, dependencies
11: success← true
12: else
13: success← false
14: end if

return success, result
15: end procedure

Figure 6: Contract Deployment pattern.

4.4 Diagrams

Class diagram

Contracts are immutable in nature. In a centralized setup, we just update the code with
and deploy to all the servers. While using contracts cannot be updated, new contracts
need to be deployed. We need to make sure we do not lose references to our storage
layer. The storage layer is separated to ensure a reference is maintained. Every change
to the contract would require an update to the client side binaries, this would be highly
inefficient. To overcome this issue, we propose a register-contract which contains a refer-
ence to the main contract. The client function will have to execute the register-contract
and get the address of the main contract. Once the address is received, it will be able to
get the latest code of the contract. Separation of concerns is of prime importance in the
blockchain.

Figure 7: Package installation.

Figure 8: Publishing a package.

Sequence diagrams

The installation sequence diagram shows the installation of a package. The diagram
shows the interaction between the client, the network, and the IPFS server. In HDFS,
the blocks do not flow through the name-node. However, the name-node does keep a log
of all the blocks on the data nodes Shvachko et al. (2010). Similar to HDFS, the file data
does not go through the blockchain nodes. The file data is fetched from the IPFS servers.
This would increase the throughput and also avoid the blockchain intermediation issue.

The package to be published is uploaded is converted to a tar file. Once the package
is compressed, it is uploaded to IPFS. IPFS returns a hash link which helps us uniquely
identify the file when needed. We take this hash link and send it to the blockchain node
which stores the package information.

The client state diagram shows the flow of events on the client side library. The client-
side library will not installed packages that are already installed unless the developer tries
to install a different version of the same package. By doing this we save a considerable
amount of bandwidth. The client maintains a local state which keeps a track of the
packages that are installed. Top level packages will directly replace the other version by
design. The packages and their dependencies will be installed in a shared space to avoid
duplication. Dependencies of the different versions will be kept local to the package that
requires them and not in a shared space.

Figure 9: State diagram for the client.

5 Implementation

The proposed solution uses Ethereum smart contracts to store package metadata and
binaries in IPFS. Table 3 shows the software requirements for the implementation. The
Geth binary was used to run the Ethereum node. The web3 package was used for the
client side implementation. Solidity was used to write the smart contract. The web3
client gives a nice interface to interact with Ethereum based smart contract. A CentOS
instance was created on Open stack to run the Geth binary and also the P2P storage
server. The Geth binary is built in Go which means it is compatible with operating
system.

The setup can be used as a standalone system or in collaboration with another package
manager as shown in figure 10. The standalone system would require users identifying
themselves to the network and would require sufficient funds to submit transactions. The
collaboration with other package managers would allow anyone to submit transactions as
there would only group of services publishing for everyone. The copies of the transactions
would be maintained in both the centralized and the decentralized systems.

The NPM listener pushes metadata to interested services. The metadata consists of
the name, version, license etc. A daemon was created to get the metadata from NPM.
This daemon also excludes packages which don’t have a valid version. It was noticed
that the speed at which the packages arrived was too fast. This would cause transaction
clouding on the Ethereum node. A queue was placed to improve the flow control between
the workers and the listener.

Another CentOS instance was used to run the workers and the service. The messages
are given to the workers in a round robin fashion. The workers are the processes which
upload the binaries to the peer to peer storage and push the metadata on the Ethereum
network. The workers can be horizontally scaled out to improve job throughput. The
workers are decoupled from the listener.

Table 3: Software requirements.

Software Version

Geth v1.8.13
Solidity v0.4.24
Node.js v6.9.1
IPFS v0.4.17
web3 v0.18.4

The smart contract models the dependencies graph of each package. A graph network
can be visualized with contract storing all the dependencies and the dependents on the
package. The public nature of the Ethereum makes it well suited for open source packages.
The storage contract has data operations and is primarily the data layer of the system.
As of now, web3 does not have a stable way of handling dynamic structures. Once the
support for the this is stable a model contract can be used to leverage this feature. A
model contract as shown in figure 6 can be used to improve the algorithm or add other
interesting features on top of the storage layer. This pattern is also used to ensure that
we do not lose the reference to our storage data as contracts are immutable and structures
cannot be changed once the contract is deployed.

Web3 v0.20 was chosen over v1.0 beta because it’s been around longer. Also, some of
the experimental solidity features on string arrays were tried. The bytes array was found
to be more stable than the string array in solidity. This, however, has an additional
cost of converting all the byte elements to string elements after getting them from the
contract.

Figure 10: System Architecture for publishing new packages

A test simulator was used for the creation of the contract and initial testing. The
test simulator has fake accounts and fake Ethereum which can be easy to check the
functionality before deploying the main or any test Ethereum network.

The Rinkeby test network was used for the actual execution of the smart contracts.
Rinkeby uses Proof of Authority, which means that there are authorized set of miners
who verify transactions and add blocks. Ether needs to be expended while submitting
transactions to the Smart contract. This Ether was received from the Ethereum Rinkeby
faucet.

The block synchronisation of Ethereum nodes depends on other peers in the test
network. The Ethereum node first synchronizes all the blocks and then starts accepting
contracts and transactions. The full synchronization mode requires a lot of time as the
chain is very large. The light mode, on the other hand, is the fastest option but does not
have much support from peers. The fast synchronization mode just downloads the block
headers instead of the entire block and it also has enough support from the community
so the synchronization in this mode is fast.

The main network uses the Proof of work concept where the miners need to expend
CPU to solve a computation problem and then add blocks to the network. The miners
are rewarded with Ether once they solve the problem. The test network instead works
on a proof of authority concept. It means there are predefined nodes which are used to
verify transactions and adding blocks on the network. There are no miners on the test
Rinkeby network. The implementation of proof of authority reduces the risk of the chain
becoming big quickly because the authorized nodes include blocks at a fixed rate.

In all its essence, the Ethereum network is similar to a PaaS system. The contracts are
distributed to all the miners, who execute the function with the transaction parameters for
us and broadcast the results over the network. The clients pay for submitting transactions
and deploying contracts, similar to how we pay the cloud service providers for deploying
services on their platform. We do not control the environment in which the transaction
is mined. In case we need more control on the mining activity, it would be good to opt
for a private network rather than a public one.

6 Evaluation

Our evaluation has been performed using 4338 packages, including the top 950 packages
which are used directly and transitively by other packages as documented in Kashcha
(2018).

It has been noticed that if the Ethereum node is bombarded with transactions, the
node does not broadcast those transactions immediately and these get stuck on the node
as pending transactions. Miners get an incentive for mining blocks on the main network,
so the main network has more miners. The Rinkeby network does not have any miners as
it works on a Proof of Authority system. Only authorized nodes can verify transactions
on the Rinkeby network. The authorized nodes ensure that the Rinkeby network grows
at a steady pace.

Consequently, we have to set the gas price appropriately in order for the transactions to
be mined quickly. Had the gas price been low, the transactions would not have been picked
up for mining because the miners would have found other more lucrative transactions.
Consequently, our initial gas price was 1 gwei for transactions and, by using a simple
demand-supply iterative function, it was finally increased to 5 gwei.

Our tests ran for a week. It was initially noticed that the workers would crash because
of insufficient funds. As the funds come from the faucet, which happens to be rate limited,
we decided to slow submit transactions and keep adaptively funding the address with more
ether.

Bandwidth monitoring was kept on the instance where the blockchain node was in-
stalled. The results are plotted in Figure 11. The evaluation involved requesting a list of
packages along with their versions present on the node. The metadata for these packages
was then requested individually.

0 20 40 60 80 100
0

100

200

300

400

500

600

700

seconds

B
an

d
w

id
th

in
k
B

it
/s

Bandwidth measurement

Figure 11: Empirical evaluation of Bandwidth usage

Nload was used to track the bandwidth of the instance. As seen in the figure, there
is a sharp increase in the outgoing bandwidth, as much as 650.48 Kbit/s. The event
happens because all the events are requested from the node. Requesting the events for
the packages caused the bandwidth to spike up. The outgoing bandwidth gradually
trickled down to 396.32 Kbit/s as other package metadata was requested.

Latency test was conducted on the Blockchain node. The results for the test are given
in 4.

Table 4: Latency test for getting package meta data from the node.

Number of packages Statistics (ms)
Head Mean Median standard deviation

250 148.3 146 8.73
500 149.578 147 9.23
1000 148.991 147 9.05

It was noticed that the mean latency to get the package metadata from the Blockchain
node is approximately 148 ms. The cost to get the overall package would be higher as
there is no handling for parsing dynamic structures on the web3 client. Once there is a
stable support for dynamic structures, metadata for many packages can be requested at
once.

Figure 12: Network graph of packages (partial view).

Referring to 12, we can see at many packages in the Javascript ecosystem can have
multiple levels of dependencies. The graph is modeled directly from the data received
from the Blockchain node. It was noticed that some packages have cyclic dependencies.
The impact of the cyclic nature of the dependencies has not been fully studied, but we
argue that it may be detrimental to the overall traceability and version control for a
repository.

The highest number of direct dependents observed in the subset which was tested
is 361. Some packages such as lodash, commander and body-parser show an in-

creasing number of first level dependents. This number is likely to grow as previously
shown Kashcha (2018). These packages are critical to the community as they form the
basis of any sort of development.

7 Conclusion and Future Work

The proposed system is a reliable decentralised architecture for package management.
The system relies on the Ethereum for functioning. Smart contracts have been used for
integrating our logic onto the blockchain network, where IPFS has been proposed for
storing actual binaries.

The blockchain network can have any number of nodes in the network at a time. The
users can install the Ethereum node on their infrastructure or use it as a service in order to
keep track of the dependencies. Also, the underlying architecture can be also be used for
any kind of dependency management with tweaks to the client and version changes in the
contract. The native client will, however, change according to the platform. Blockchain
networks have good read throughout compared to the write throughput which could be
ideal for dependency management.

Further work is envisioned to study dependencies at multiple levels as our current
work has only taken into account single-level. Ideally, it may be useful to study in detail
cliques which can uncover not only functional software properties, but also non-functional
characteristics such as developer relationships, code styles, and other useful patterns.

References

Abate, P., Cosmo, R. D., Treinen, R. and Zacchiroli, S. (2012). Dependency solving: A
separate concern in component evolution management, Journal of Systems and Soft-
ware 85(10): 2228–2240.

Alam, S., Kelly, M. and Nelson, M. L. (2016). Interplanetary wayback: The permanent
web archive, JCDL ’16, ACM, Newark, pp. 273–274.

Balalaie, A., Heydarnoori, A. and Jamshidi, P. (2016). Microservices architecture enables
devops: Migration to a cloud-native architecture, IEEE Software 33(3): 42–52.

Benet, J. (2014). Ipfs-content addressed, versioned, p2p file system. Accessed on
19.2.2018.
URL: https://arxiv.org/pdf/1407.3561.pdf

Buterin, V. et al. (2014). A next-generation smart contract and decentralized application
platform, Technical report. Accessed on 19.2.2018; Cited by 215.
URL: https://github.com/ethereum/wiki/wiki/White-Paper

Cox, R. (2016). Version SAT. Accessed on 19.2.2018.
URL: https://research.swtch.com/version-sat

Decan, A., Mens, T. and Claes, M. (2016). On the topology of package dependency
networks: A comparison of three programming language ecosystems, ECSA ’16, ACM,
Copenhagen, pp. 21:1–21:4.

Highsmith, J. and Cockburn, A. (2001). Agile software development: the business of
innovation, Computer 34(9): 120–127.

Kashcha, A. (2018). Npm rank. Accessed on 25.07.2018.
URL: https://gist.github.com/anvaka/8e8fa57c7ee1350e3491

Krueger, C. W. (1992). Software reuse, ACM Computing Surveys 24(2): 131–183.

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Accessed on
19.2.2018; Cited by 3059.
URL: https://bitcoin.org/bitcoin.pdf

Nikitin, K., Kokoris-Kogias, E., Jovanovic, P., Gailly, N., Gasser, L., Khoffi, I., Cap-
pos, J. and Ford, B. (2017). CHAINIAC: proactive software-update transparency via
collectively signed skipchains and verified builds, USENIX Security 2017, USENIX
Association, Vancouver, pp. 1271–1287.

Ottenstein, K. J. and Ottenstein, L. M. (1984). The program dependence graph in a
software development environment, SIGPLAN Not. 19(5): 177–184.

Ruparelia, N. B. (2010). Software development lifecycle models, SIGSOFT Softw. Eng.
Notes 35(3): 8–13.

Schlueter, I. (2010). The node package manager and registry. Accessed on 19.2.2018.
URL: https://www.npmjs.org

Semantic Versioning user guide (2013). Accessed on 10.3.2018.
URL: https://semver.org/

Shvachko, K., Kuang, H., Radia, S. and Chansler, R. (2010). The hadoop distributed file
system, MSST’10, IEEE, Lake Tahoe, pp. 1–10.

Toffetti, G., Brunner, S., Blchlinger, M., Spillner, J. and Bohnert, T. M. (2017). Self-
managing cloud-native applications: Design, implementation, and experience, Future
Generation Computer Systems 72: 165 – 179.

Tucker, C., Shuffelton, D., Jhala, R. and Lerner, S. (2007). OPIUM: Optimal package
install/uninstall manager, ICSE ’07, IEEE, Minneapolis, pp. 178–188.

Wittern, E., Suter, P. and Rajagopalan, S. (2016). A look at the dynamics of the JavaS-
cript package ecosystem, MSR’16, ACM/IEEE, Austin, pp. 351–361.

	Introduction
	Related Work
	Contribution
	Methodology
	Data structure
	Storage solution
	Algorithms
	Diagrams

	Implementation
	Evaluation
	Conclusion and Future Work

