MSc Data Analytics
Research Project
Configuration Manual

Erin Gilheany
X14106671
Supervisor: Vikas Sahni
Table of Contents

Setting up the Virtual Machines .. 4

1. Download and Install Virtual Machine Software .. 4
2. Download Ubuntu Operating System .. 7
3. Set up our initial Virtual Machine – Hadoop 2.6 .. 8
4. Booting up our Initial Virtual Machine .. 13
5. Change Screen Resolution on Virtual Box .. 20
6. Clone your initial VM to be used for testing of Hadoop 2.7 and Spark 2.0 .. 21

Hadoop 2.6: Set Up, Configuration and Process Implementation ... 24

1. Set up Required Software and Environment ... 24
2. Download, Set Up and Configure Hadoop 2.6.4 .. 26
3. Download and Set Up Mahout 0.12.2 .. 29
4. Download Dataset and move to HDFS .. 30
5. Run Mahout Algorithms ... 32
 1. TFIDF on Hadoop .. 33
 2. Naïve Bayes on Hadoop .. 34

Hadoop 2.7: Set Up, Configuration and Process Implementation ... 35

1. Updates to Process Needed for Hadoop 2.7.3 ... 35

Spark 2.0: Set Up, Configuration and Process Implementation .. 36

1. Download, Set Up and Configure Spark 2.0.0 .. 36
2. Install Scala and check Spark Set Up .. 37
3. Run MLlib Algorithms .. 41
 3. TFIDF on Spark .. 42
 4. Naïve Bayes on Spark ... 43
1. Download and Install Virtual Machine Software
Firstly the software for setting up a virtual machine needs to be downloaded. I used “Oracle VM VirtualBox” which can be found [here](#). The computer I am running this on is a Windows 64-bit so I downloaded the relevant release.

VirtualBox binaries

By downloading, you agree to the terms and conditions of the respective license.

- VirtualBox platform packages. The binaries are released under the terms of the GPL version 2.
 - VirtualBox 5.1.4 for Windows hosts [x86/amd64](#)
 - VirtualBox 5.1.4 for OS X hosts [amd64](#)
 - VirtualBox 5.1.4 for Linux hosts
 - VirtualBox 5.1.4 for Solaris hosts [amd64](#)

Go to the location where the above has been downloaded to and double-click to run the .exe file.

Click next on the below screen.
Click next on the below screen.

Click next on the below screen.

Click Yes on the below screen.
Click Install on the below screen.

The software will install and there should be an icon on your desktop. Please double click on this icon to run the newly installed application.
2. Download Ubuntu Operating System

Download an Ubuntu Desktop .iso file so that we can boot on Virtual Machine from here. Preferably copy this file to an external disk (to be used when setting up a new VM).
3. Set up our initial Virtual Machine – Hadoop 2.6

We return to our VM Ware application previously downloaded and click on “New” as per screen below.

We will start off setting up the virtual machine which we run Hadoop version 2.6 on. Therefore we will name it as per screen below.

Please ensure to enter Linux in the Type dropdown and Ubuntu in the Version dropdown with the bit that matches the host computer.
Set the VM memory size to be 4GB or 4096MB.

Note: The host machine in this instance has an overall memory of 6GB so this is close to the maximum memory that we can use for the virtual machines.
For this instance we have chosen “Create a virtual hard disk now”. Click Create.
We have chosen to select “VDI (VirtualBox Disk Image)” as per screen below. Click Next.

Choose “Fixed Size”. Click Next.
Change hard disk size to 20.00 Gb. Click Create.

The screen below will appear and take a few minutes to complete.
When the above process you will have your Virtual Machine in the screen as per below and ready to boot/start up.

4. **Booting up our Initial Virtual Machine**

Double click on your “Hadoop 2.6” icon as per above screen.

In the screen below, press on the folder icon and find the location where you moved the Ubuntu .iso file if it does not automatically appear here. Click Start.
You have the **Auto capture keyboard** option turned on. This will cause the Virtual Machine to automatically **capture**.

Select start-up disk

Please select a virtual optical disk file or a physical optical drive containing a disk to start your new virtual machine from.

The disk should be suitable for starting a computer from and should contain the operating system you wish to install on the virtual machine if you want to do that now. The disk will be ejected from the virtual drive automatically next time you switch the virtual machine off, but you can also do this yourself if needed using the Devices menu.

- **ubuntu-14.04.1-desktop-amd64.iso** (Oracle)

![Start or Cancel button]

Please choose a virtual optical disk file

- **Install Ubuntu (F):**

<table>
<thead>
<tr>
<th>Name</th>
<th>Date modified</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>install</td>
<td>22/07/2014 23:36</td>
<td>Folder</td>
</tr>
<tr>
<td>installer</td>
<td>01/01/2007 01:40</td>
<td>Folder</td>
</tr>
<tr>
<td>isolinux</td>
<td>22/07/2014 23:36</td>
<td>Folder</td>
</tr>
<tr>
<td>Manual</td>
<td>01/01/2007 01:40</td>
<td>Folder</td>
</tr>
<tr>
<td>Music</td>
<td>03/05/2012 23:14</td>
<td>Folder</td>
</tr>
<tr>
<td>pics</td>
<td>22/07/2014 23:35</td>
<td>Folder</td>
</tr>
<tr>
<td>pool</td>
<td>22/07/2014 23:35</td>
<td>Folder</td>
</tr>
<tr>
<td>pretrained</td>
<td>22/07/2014 23:35</td>
<td>Folder</td>
</tr>
<tr>
<td>RECORDINGS</td>
<td>08/06/2008 20:08</td>
<td>Folder</td>
</tr>
<tr>
<td>System Volume Information</td>
<td>15/11/2013 12:20</td>
<td>Folder</td>
</tr>
<tr>
<td>ui</td>
<td>16/08/2014 00:55</td>
<td>Folder</td>
</tr>
<tr>
<td>ubuntu-14.04.1-desktop-amd64.iso</td>
<td>15/08/2014 23:18</td>
<td>Disc Image File</td>
</tr>
</tbody>
</table>

![Open or Cancel button]
It may take a short time for the next screen to load.

Select language – English in this case – and click “Install Ubuntu”.

Follow instructions as per screen below by allowing 6.5GB available drive space, plug in your computer to a power source and keep it plugged in, and get and remain connected to the internet.

Click on “Download updates while installing”.

Note: Following instructions above will allow for a smoother install if any issues were to arise.

Click Continue.
Select “Erase and install Ubuntu” and click “Install Now”.

Input your location if this is not automatically picked up – in my case it’s Dublin.

Click Continue.
Select your desired Keyboard layout. I have chosen Irish as per below. Click Continue.

Note: This does not refer to Irish as a language, all language returns in English.
Fill in the fields in screen below with “Require my password to log in”. Click Continue.

Note: Please ensure that a memorable password is selected as we will need to use it later in the process.

The following screen will appear. We just have to wait until the install finishes. This can take a few minutes.
Click on Restart Now when the screen below appears.

![Installation Complete message](image)

The below screen will appear. We do not have to press anything here.

```
wait-for-state stop/waiting
  * Stopping rsync daemon rsync [ OK ]
  * speech-dispatcher disabled; edit /etc/default/speech-dispatcher
    remaining processes to terminate... [ OK ]
  * All processes ended within 3 seconds... [ OK ]
ModemManager[1260]: <info> Caught signal, shutting down...
ModemManager[1260]: <warn> Could not acquire the 'org.freedesktop.ModemManager1' service name
  * Unmounting temporary filesystems... [ OK ]
  * Deactivating swap... [ OK ]
  * Stopping early crypto disks... [ OK ]
```

You may need to restart the VM to ensure everything is working correctly. Click on the X at top right hand side of the VM screen.

![VM screen](image)

On the below select “Power off the machine” and click ok.
5. Change Screen Resolution on Virtual Box

Log into machine.
Open Terminal, type in the following:

```
sudo apt-get install virtualbox-guest-utils virtualbox-guest-x11 virtualbox-guest-dkms
```

Enter your login password

Enter Y and press enter when it displays: [Do you want to continue]

Restart computer and the screen resolution should fit your host machine’s screen resolution and will adapt as you maximize or minimize the screen.

This is the last step in setting up the virtual machine. Before we dive into setting up software applications on this virtual machine, we close out of the above because we have to make an identical clone of this VM so that we can separately set up the other version of Hadoop we are going to test, Hadoop 2.7 and subsequently Spark 2.0.0. We will not set up a separate machine for Hadoop 2.7 and Spark 2.0 as Spark will sit on top of this version of Hadoop. It may be possible to set these all up on the one machine but this strategy avoids any confusion and possible mistakes when connecting Spark to HDFS.

6. Clone your initial VM to be used for testing of Hadoop 2.7 and Spark 2.0

Back in the Oracle VM VirtualBox Manager screen we right click on the Hadoop 2.6 VM icon.

From menu that appears Click Clone.
We will name our new VM in line with the application to be installed on it “Hadoop 2.7 and Spark 2.0”.

Click Next

Select “Full clone”. Click Clone.
The following will appear. We just wait until this reaches 100% and our VM is fully cloned.

![Clone Virtual Machine Cloning Machine](image)

When complete open up the VM “Hadoop 2.7 and Spark 2.0” to check that the system boots and you can log in. And you will be presented with the below. You click on X on the two banners at the top of the page. Close out of this VM.

![Virtual Machine Interface](image)

Note: This virtual machine will be identical at this point to VM “Hadoop 2.6” including the users and passwords. Anything done in either of the environments will only take effect within that VM, they are not synced or linked to one another.
1. Set up Required Software and Environment

All of below commands will require your log-in password.

Note: At any stage of above commands you are asked "Do you want to continue? [Y/n]". Enter "Y" and hit return.

Open terminal and run the following commands:

```
sudo apt-get update
sudo apt-get install openjdk-7-jre
sudo apt-get install openjdk-7-jdk
sudo apt-get install ssh
sudo apt-get install rsync

sudo addgroup hadoop
```

If you have not already set up hduser account:

```
sudo adduser --ingroup hadoop hduser
```

If you set up the machine as hduser account:

```
sudo usermod -a -G hadoop hduser
```

Run this if you are not already logged in as hduser

```
su - hduser

ssh-keygen -t rsa -P ""
```

Enter "/home/hduser/.ssh/authorized_keys" when it asks for a location as per screenshot below and hit return.
ssh localhost

If you are presented with the following message, enter "yes" and hit return.

You may then have to enter your password and the below will return.

We exit out of ssh and log out of the VM OS by running the following commands:

```
exit
```

If you have not set up as hduser run the exit command again to logout out of hduser. (Note: not the case for my set up as I only have hduser set up)

```
exit
```

Disable IPv6 as Hadoop is not supported for these networks.

```
sudo gedit /etc/sysctl.conf
```

Enter password if necessary. An empty document will appear. Enter the below text. Save and close the document.

```
# disable ipv6
net.ipv6.conf.all.disable_ipv6 = 1
net.ipv6.conf.default.disable_ipv6 = 1
net.ipv6.conf.lo.disable_ipv6 = 1
```
2. Download, Set Up and Configure Hadoop 2.6.4

We will download Hadoop 2.6.4 itself.

```
```

```
sudo cp hadoop-2.6.4.tar.gz /usr/local/
cd /usr/local
sudo tar xvf hadoop-2.6.4.tar.gz
sudo ln -s hadoop-2.6.4 hadoop
sudo chown -R hduser:hadoop hadoop-2.6.4
sudo rm hadoop-2.6.4.tar.gz
sudo update-alternatives --config java
```

You will see similar text to the below return, please take note of the location where Java is installed, this will be needed later in the process. In my case it is "/usr/lib/jvm/java-7-openjdk-amd64" as per screen below:

```
hduser@hduser-VirtualBox:/usr/local$ sudo update-alternatives --config java
There is only one alternative in link group java (providing /usr/bin/java): /usr/lib/jvm/java-7-openjdk-amd64/jre/bin/java
Nothing to configure.
```

Note: the location is not the full text as printed out but up until just before jre directory.

If not currently logged in as hduser do so:

```
su - hduser
cd /usr/local/hadoop/etc/hadoop
cp mapred-site.xml.template mapred-site.xml
```

In our hadoop-env.sh we enter the java location we took note of just a few steps ago.

```
vi hadoop-env.sh
```
export JAVA_HOME=/usr/lib/jvm/java-7-openjdk-amd64

```
vi mapred-site.xml
```

Insert the following configuration properties to the file.

```xml
<configuration>
  <property>
    <name>mapreduce.jobtracker.address</name>
    <value>local</value>
  </property>
</configuration>
```

```
mkdir ~/tmp
```

```
mkdir ~/hdfs
```

```
chmod 750 ~/hdfs
```

```
vi core-site.xml
```

Enter the below properties to this file.

```xml
<configuration>
  <property>
    <name>hadoop.tmp.dir</name>
    <value>/home/hduser/tmp</value>
  </property>
  <property>
    <name>fs.defaultFS</name>
    <value>hdfs://localhost:54310</value>
  </property>
</configuration>
```

```
vi hdfs-site.xml
```

```xml
<configuration>
  <property>
    ...
  </property>
</configuration>
```
<name>dfs.replication</name>
<value>1</value>
</property>

<property>
 <name>dfs.datanode.data.dir</name>
 <value>/home/hduser/hdfs</value>
</property>

<configuration>

 cd /usr/local/hadoop
 bin/hdfs namenode -format
 sbin/start-dfs.sh

 *Enter password multiple times and type "yes" and return if asked to continue.

 sbin/start-yarn.sh

 jps

 You should see the following return:

 hduser@hduser-VirtualBox:/usr/local/hadoop$ jps
 13154 DataNode
 13327 SecondaryNameNode
 13867 Jps
 13466 ResourceManager
 13773 NodeManager
 13013 NameNode

 A useful resource for all information on Hadoop Environment and Administration is to open a web browser/tab in web browser and type in the following location:

 localhost:50070

 If you click on "Utilities" tab at top right and the "Browse the file system" you will see a page like screenshot below. Click Go to browse through file system or go directly to a file or directory.

 Note: This is empty at the moment because we have created any directories or added any files to hdfs.
Verify All Applications for Cluster Browser is running as expected. Enter the following address into the web browser and you will see the screen below return:

localhost:8088

3. Download and Set Up Mahout 0.12.2

In terminal enter

```
cd ~
sudo wget http://mirrors.whoishostingthis.com/apache/mahout/0.12.2/apache-mahout-distribution-0.12.2.tar.gz
```

*Enter log-in password

```
sudo cp apache-mahout-distribution-0.12.2.tar.gz /usr/local
```
```
sudo tar xvf apache-mahout-distribution-0.12.2.tar.gz

sudo ln -s apache-mahout-distribution-0.12.2 mahout

sudo chown -R hduser:hadoop apache-mahout-distribution-0.12.2

sudo rm apache-mahout-distribution-0.12.2.tar.gz
```

Update bashrc file to ensure all of the following variables are included:

```
vi ~/.bashrc
```

```
#HADOOP VARIABLES START
export JAVA_HOME=/usr/lib/jvm/java-7-openjdk-amd64
export HADOOP_INSTALL=/usr/local/hadoop
export PATH=$PATH:$HADOOP_INSTALL/bin
export PATH=$PATH:$HADOOP_INSTALL/sbin
export HADOOP_MAPRED_HOME=$HADOOP_INSTALL
export HADOOP_COMMON_HOME=$HADOOP_INSTALL
export HADOOP_HDFS_HOME=$HADOOP_INSTALL
export YARN_HOME=$HADOOP_INSTALL
export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_INSTALL/lib/native
export HADOOP_OPTS="-Djava.library.path=$HADOOP_INSTALL/lib"
#HADOOP VARIABLES END

export MAHOUT_HOME=/usr/local/mahout
```

After you have updated the bashrc file as above you will need to restart the computer for changes to take effect.

Once you have restarted the computer re-enter the following commands to start up hadoop services again.

```
cd /usr/local/hadoop

sbin/start-dfs.sh

sbin/start-yarn.sh
```

4. Download Dataset and move to HDFS

```
cd ~
```
sudo mkdir ~/20newsgroups

cd 20newsgroups

sudo wget http://people.csail.mit.edu/jrennie/20Newsgroups/20news-bydate.tar.gz

sudo tar xvf 20news-bydate.tar.gz

cd ~

sudo chown -R hduser 20newsgroups

cd /usr/local/hadoop

bin/hdfs dfs -mkdir /20newsgroups

bin/hdfs dfs -copyFromLocal ~/20newsgroups/*/* /20newsgroups

If we look back in our Hadoop Administration @ localhost:50070 and go to Utilities and Browse the file system, you will now see the directory as follows:

![Hadoop Administration](image)

And when you click on 20newsgroups you will see subdirectories (20 news group categories) as follows (only some categories/subdirectories show because all cannot fit on screenshot, scroll down to view all of them):
Each subdirectory contains a large number of documents within as per below:

You can manually download these files if you wish to see text within by clicking on Name and then download on the pop up that appears.

5. Run Mahout Algorithms

Create folder to store results/output of process

```
mkdir ~/mahout
```

Run transformation to sequence process

```
cd /usr/local/mahout
```
After this is successfully run we will see a new directory in HDFS files system (go to localhost:50070 -> Utilities -> Browse the file system)

And within this directory two files:

Return to the terminal take note of the output of previous command.
Copy and paste this into a file as we will use this for analysis later on.

1. TFIDF on Hadoop
Run the following commands:

```
bin/mahout seq2sparse -i /20newsgroups-seq -o /20newsgroups-vectors -lnorm -nv -wt tfidf
```
2. Naïve Bayes on Hadoop

```
bin/mahout trainnb -i /20newsgroups-vectors/tfidf-vectors -o /model -l /labelindex -ow
```

Save output of command in terminal to a file for later analysis.
Hadoop 2.7: Set Up, Configuration and Process Implementation

1. Updates to Process Needed for Hadoop 2.7.3

Shut down and close out of VM “Hadoop 2.6”.

Open up VM “Hadoop 2.7 and Spark 2.0”.

The process for this will be the exact same as the steps we took for Hadoop 2.6 except for 1 thing – hadoop version references.

We just need to update the command:

```
```

with

```
sudo wget http://www-eu.apache.org/dist/hadoop/common/hadoop-2.7.3/hadoop-2.7.3.tar.gz
```

Also please ensure that any command which contain reference to Hadoop version 2.6.4, update this command to reference Hadoop 2.7.3.
Spark 2.0: Set Up, Configuration and Process Implementation

1. Download, Set Up and Configure Spark 2.0.0

We are still using VM “Hadoop 2.7 and Spark 2.0”, so ensure we are still logged in to this after completing Set Up, Configuration and Process Implementation for Hadoop 2.7.

Our implementation of Spark will connect directly into the same data we used for the Hadoop experiment, which sits in hdfs (hadoop file system).

So we download Spark from the following location

http://spark.apache.org/downloads.html

And ensure that we have selected the correct versions of both Spark (2.0.0) and Hadoop (2.7)

We then move the downloaded Spark file to a specific directory. In this case I have moved it to the same location as Hadoop: `/usr/local/

Using the Linux commands below:

```
cd ~/Downloads
sudo cp spark-2.0.0-bin-hadoop2.7.tgz /usr/local/
```

We then go to this directory, extract the file and set up a symbolic link (and name it Spark) for easier navigation to spark.

```
cd /usr/local
```
sudo tar –xvzf spark-2.0.0-bin-hadoop2.7.tgz

sudo ln -s spark-2.0.0-bin-hadoop2.7 spark

(Optional) I then removed the original downloaded .tgz file from this directory just to keep the folder as clean as possible.

sudo rm spark-2.0.0-bin-hadoop2.7.tgz

The user needs to be given permission to be able to use spark.

sudo chown -R hduser:hadoop /usr/local/spark

2. Install Scala and check Spark Set Up

First of all we will test Spark in local mode to ensure it is running correctly.

In order to do so we need to have the latest version of Scala installed as the Spark Shell uses this programming language so we download Scala from the following location:

sudo apt-get remove scala-library scala

sudo wget http://www.scala-lang.org/files/archive/scala-2.11.8.deb

sudo dpkg -i scala-2.11.8.deb

sudo apt-get update

sudo apt-get install scala

To test that the local install is working correctly we navigate to the spark directory and open the spark shell

 cd /usr/local/spark

bin/spark-shell

We see a screen that appears as follows:
Enter ":quit" and hit return to exit shell.

We now need to configure Spark so that it connects with the Hadoop set up that has already been set up which currently consists of one datanode as follows:

```
hduser@ncistudent-VirtualBox:/usr/local/spark$ jps
24285 DataNode
24507 SecondaryNameNode
24683 ResourceManager
31322 Jps
24821 NodeManager
24146 NameNode
```

We add the following lines to the bashrc file, opening it using the command:

```
vi ~/.bashrc
```

#SPARKVARIABLES

```
export SPARK_HOME=/usr/local/spark
export PATH=$PATH:$SPARK_HOME/bin
```

Restart the VM so bashrc changes take effect. Log in to VM again.

We must configure the file "spark-env.sh" using the commands as follows:

```
cd /usr/local/spark/conf
```

Here there is a file named "spark-env.sh.template". We use this as the basis to our "spark-env.sh" as it does not yet exist. So we duplicate and remove "template" in the name and save it in the same location (/usr/local/spark/conf/)

```
sudo cp spark-env.sh.template spark-env.sh
```
export HADOOP_CONF_DIR=/usr/local/hadoop/conf

Set up a log folder and ensure permission is granted to user hduser:hadoop

```
cd /usr/local/spark
sudo mkdir logs
sudo chown hduser:hadoop logs
```

Restart all services

```
cd /usr/local/hadoop
sbin/stop-all.sh
sbin/start-dfs.sh
sbin/start-yarn.sh
```

On top of the Hadoop services we also have to start our Spark Master and Worker

```
cd /usr/local/spark
sbin/start-all.sh
```

jps
This is to ensure Master is running as in below:

```
hduser@ncistudent-VirtualBox:/usr/local/spark$ jps
2899  NodeManager
11646  Jps
2763  ResourceManager
3473  SparkSubmit
2559  SecondaryNameNode
3241  Master
11606  Worker
2228  NameNode
2367  DataNode
```

You can view more in info relating to Spark master at address in web browser:

```
localhost:8080
```
Run spark-shell in order to use machine learning

```
bin/spark-shell --master yarn --driver-memory 1g --executor-memory 3g
```

Please take note of address as per above: Spark Context Web UI available at http://10.0.2.15:4041 as this is where we will see our metrics for analysis.

This may be different in your implementation. Enter this address into web browser and you will see the following UI.
3. Run MLlib Algorithms

Staying in the spark shell -> Import required packages.

```scala
import org.apache.spark.mllib.feature.{HashingTF, IDF}
import org.apache.spark.mllib.linalg.Vector
import org.apache.spark.rdd.RDD
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.classification.{NaiveBayes, NaiveBayesModel}
```

Import data input files from HDFS into an RDD of (String, String)

```scala
val example = sc.wholeTextFiles("hdfs://127.0.0.1:54310/20newsgroups/*")
```

Manipulate and transform this RDD so that it is in the correct format for running TD-IDF as well as Naïve Bayes

```scala
val example1 = example.map{case(directory, text) => (text,directory)}
val example2 = example1.map{case(text, directory) =>
  if(directory contains "alt.atheism"){1}
  else if(directory contains "comp.graphics"){2}
  else if(directory contains "comp.os.ms-windows.misc"){3}
  else if(directory contains "comp.sys.ibm.pc.hardware"){4}
  else if(directory contains "comp.sys.mac.hardware"){5}
  else {"default"}
}
```
else if(directory contains "comp.windows.x"){
else if(directory contains "misc.forsale"){
else if(directory contains "rec.autos"){
else if(directory contains "rec.motorcycles"){
else if(directory contains "rec.sport.baseball"){
else if(directory contains "rec.sport.hockey"){
else if(directory contains "sci.crypt"){
else if(directory contains "sci.electronics"){
else if(directory contains "sci.med"){
else if(directory contains "sci.space"){
else if(directory contains "soc.religion.christian"){
else if(directory contains "talk.politics.guns"){
else if(directory contains "talk.politics.mideast"){
else if(directory contains "talk.politics.misc"){
else if(directory contains "talk.religion.misc"){
else {0}, text}}

val labels = example2.map{case(labels,text) => labels}
val pretf = example2.map{case(labels,text) => text.split(" ").toSeq}

3. TFIDF on Spark

Run IDF and subsequently TFIDF on output from transformations on input data above.

val hashingTF = new HashingTF()
pretf.cache()
val tf: RDD[Vector] = hashingTF.transform(pretf)
val idf = new IDF().fit(tf)

The latest command will be where we measure our performance of TFIDF. From here we perform 4 runs of the commands which create spark tasks, ignoring the first one and record these results for our
findings. Our results will be taken from localhost:4040 (or respective address as per spark-shell set up).

4. Naïve Bayes on Spark

We will prepare the data further for input into Naïve Bayes

```scala
pref.unpersist()
val tfidf = idf.transform(tf)
val training = labels.zip(tfidf)

Make labeled points for input of Naïve Bayes and run multinomial Naïve Bayes.

```scala
val training1 = training.map{case(x,y) => LabeledPoint(x,y)}
training1.cache()
val model = NaiveBayes.train(training1, lambda = 1.0, modelType = "multinomial")
```

From here we perform 4 runs of the commands which create spark tasks, ignoring the first one and record these results for our findings. Our results will be taken from localhost:4040 (or respective address as per spark-shell set up).